Robust State Estimation against Sparse Integrity Attacks

نویسندگان

  • Duo Han
  • Yilin Mo
  • Lihua Xie
چکیده

We consider the problem of robust state estimation in the presence of integrity attacks. There are m sensors monitoring a dynamical process. Subject to the integrity attacks, p out of m measurements can be arbitrarily manipulated. The classical approach such as the MMSE estimation in the literature may not provide a reliable estimate under this so-called (p,m)-sparse attack. In this work, we propose a robust estimation framework where distributed local measurements are computed first and fused at the estimator based on a convex optimization problem. We show the sufficient and necessary conditions for robustness of the proposed estimator. The sufficient and necessary conditions are shown to be tight, with a trivial gap. We also present an upper bound on the damage an attacker can cause when the sufficient condition is satisfied. Simulation results are also given to illustrate the effectiveness of the estimator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convex Optimization Based State Estimation against Sparse Integrity Attacks

We consider the problem of robust estimation in the presence of integrity attacks. There are m sensors monitoring the state and p of them are under attack. The malicious measurements collected by the compromised sensors can be manipulated arbitrarily by the attacker. The classical estimators such as the least squares estimator may not provide a reliable estimate under the so-called (p,m)-sparse...

متن کامل

Resilient Configuration of Distribution System versus False Data Injection Attacks Against State Estimation

State estimation is used in power systems to estimate grid variables based on meter measurements. Unfortunately, power grids are vulnerable to cyber-attacks. Reducing cyber-attacks against state estimation is necessary to ensure power system safe and reliable operation. False data injection (FDI) is a type of cyber-attack that tampers with measurements. This paper proposes network reconfigurati...

متن کامل

Robust Estimation in Linear Regression with Molticollinearity and Sparse Models

‎One of the factors affecting the statistical analysis of the data is the presence of outliers‎. ‎The methods which are not affected by the outliers are called robust methods‎. ‎Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers‎. ‎Besides outliers‎, ‎the linear dependency of regressor variables‎, ‎which is called multicollinearity...

متن کامل

Smart grid data integrity attacks: characterizations and countermeasuresπ

Coordinated cyberattacks of power meter readings can be arranged to be undetectable by any bad data detection algorithm in the power system state estimation process. These unobservable attacks present a potentially serious threat to grid operations. Of particular interest are sparse attacks that involve the compromise of a modest number of meter readings. An efficient algorithm to find all unob...

متن کامل

Attack - Resilient H 2 , H ∞ , and ` 1 State Estimator

Due to its distributed nature, a cyber-physical system is vulnerable to various faults, including sensory integrity attacks. Such faults need to be accounted for in the design of a state estimator. In this paper, we consider sparse sensor faults, in which a small unknown group of sensors can be compromised. We first show a necessary condition that allows the state to be estimated in the presenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1601.04180  شماره 

صفحات  -

تاریخ انتشار 2016